Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Molecules ; 26(14)2021 Jul 12.
Article in English | MEDLINE | ID: covidwho-1323315

ABSTRACT

Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.


Subject(s)
Azoles/chemistry , Azoles/chemical synthesis , Azoles/pharmacology , Organoselenium Compounds/chemistry , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/pharmacology , Animals , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Biomimetics/methods , Cyclooxygenase Inhibitors/pharmacology , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/pharmacology , Humans , Isoindoles , Molecular Structure , Neuroprotective Agents/pharmacology , Selenium/chemistry , Selenoproteins/chemical synthesis , Selenoproteins/pharmacology
2.
Comput Biol Chem ; 89: 107372, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-743928

ABSTRACT

The SARS-CoV-2 virus is causing COVID-19 resulting in an ongoing pandemic with serious health, social, and economic implications. Much research is focused in repurposing or identifying new small molecules which may interact with viral or host-cell molecular targets. An important SARS-CoV-2 target is the main protease (Mpro), and the peptidomimetic α-ketoamides represent prototypical experimental inhibitors. The protease is characterised by the dimerization of two monomers each which contains the catalytic dyad defined by Cys145 and His41 residues (active site). Dimerization yields the functional homodimer. Here, our aim was to investigate small molecules, including lopinavir and ritonavir, α-ketoamide 13b, and ebselen, for their ability to interact with the Mpro. The sirtuin 1 agonist SRT1720 was also used in our analyses. Blind docking to each monomer individually indicated preferential binding of the ligands in the active site. Site-mapping of the dimeric protease indicated a highly reactive pocket in the dimerization region at the domain III apex. Blind docking consistently indicated a strong preference of ligand binding in domain III, away from the active site. Molecular dynamics simulations indicated that ligands docked both to the active site and in the dimerization region at the apex, formed relatively stable interactions. Overall, our findings do not obviate the superior potency with respect to inhibition of protease activity of covalently-linked inhibitors such as α-ketoamide 13b in the Mpro active site. Nevertheless, along with those from others, our findings highlight the importance of further characterisation of the Mpro active site and any potential allosteric sites.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Protease Inhibitors/pharmacology , Protein Multimerization/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Azoles/chemical synthesis , Azoles/chemistry , Azoles/pharmacology , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/chemical synthesis , Coronavirus Protease Inhibitors/chemistry , Humans , Isoindoles , Ligands , Lopinavir/chemical synthesis , Lopinavir/chemistry , Lopinavir/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Ritonavir/chemical synthesis , Ritonavir/chemistry , Ritonavir/pharmacology , SARS-CoV-2/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL